David M. Kopec, Extension Turfgrass Specialist
The soil portion of a turf system represents a large fraction of the biological and physical activities necessary for turfgrass growth. It serves as a growth medium, and a source of nutrients and water. The interaction nature of soils and water together is the focus of this presentation. Basically the soil particle size, the soil particle size distribution, and the structure of the soil determines the moisture characteristics (soil water relationships) a particular turfgrass soil will have. Soil particles are basically composed of sands, silt, clays and organic matter. Sands include particle sizes which range from 0.05 mm to 2.0 mm in size. This is a very large range of particle sizes! Silt particles range in size from 0.05 mm to 0.002 mm, and clay particles are those particles less than 0.002 mm in size.
Soil textural fractions
Infiltration
This refers to the amount of water that passes through the soil surface
in terms of depth (inches) in a given time period (usually 1 hour). Lighter
textured soils (such as sands or sandy loams) have desirable infiltration
rates. This is important in the fact that the turf can have water penetrate
into the soil relatively quickly so no runoff or puddling occurs. 'Heavy'
textured soils which have a lot of clay and/or silt often have poor water
penetration (infiltration), because the space that the soil occupies is
relatively dense. Organic matter helps infiltration because of the soil
aggregation that occurs with organic matter (makes for larger soil particles)!
The addition of turfgrass to the turf-system generally increases infiltration
rates. For essentially all soil-types, the initial intake of water is greatest
at the beginning of an irrigation or rainfall (when the surface is driest).
After the first 1/2" becomes wet, the infiltrate rate will slow down.
[Practical Implications of Infiltration Rates of Soils on Irrigation]
(1) All dry soils will take up water rapidly at first, then slow down
in water uptake.
(2) Soils which have slow infiltration rates need to be irrigated more
frequently in order to meet the water requirements of the turfgrass.
(3) Soils which have slow infiltration rates should receive the desired
amount of irrigation by applying the total amount in "shifts" or cycles
so that the water can soak in.
Representative infiltration rates for different soil textures
[What are the implications of knowing how deep water will penetrate
a particular soil type]
(1) If you sample for root depth, you can estimate the maximum irrigation
amount for that soil type. so that water does not go way past the roots.
(2) Sandy or light textured soils have the greatest depth of penetration,
'heavy' textured soils have the most shallow depth of penetration.
(3) Applying a large amount of good quality water in a single irrigation
on a sandy soil can be very wasteful.
Amount of Water Available to the Turf
The water holding capacity and the amount of water that the turf can
actually use is also a function of the soil particles and soil texture
classification. Fine textured soils as you now know, have small particle
sizes, but actually have a large surface area around them. The
surfacearea
of the soil is what retains the moisture in a particular soil! Think
of a 55 gallon drum filled with golf balls, and another 55 drum filled
with seven or eight basketballs. Each drum has many holes in the bottom
so water can drain out the bottom. If you poured 25 gallons of water into
each drum, less water would come out of the bottom drains of which drum?
Well, this would occur for the drum filled with the golf balls. The smaller
sized particles (golf balls) kept more water around the balls, compared
to that of the basketballs! Therefore, smaller sized soil particles will
retain more water. This is also why water penetrates deepest in a coarse
(basketball) textured soil.
The final consideration is that not all of the actual water held by the soil particles is available for the turfgrass roots. When the soil particles are very small (clays) the water can be held very tightly to surface areas around each clay particle. The smaller the particle(s), the less water there will be available for the plant roots to take up. This is true, even though the soil itself can hold a lot of water (see silt loam vs. clay loams below).
Total, plant available, and unavailable water-holding capacity of different
soil texture classes.
Soil Texture Total Available Unavailable
[Practical implications of soil water holding capacity and amount
of water available to the turfgrass.]
(1) Sandy soils need to be irrigated frequently, but with lesser
amounts of water per irrigation event due to fact that sandy (basketball)
soils do not store a lot of water.
(2) Sandy soils have about 50% of the soil water available to the turf.
(3) Turfgrasses grown on 'medium' textured soils (sandy loams/loams)
have the most plant available water, even though they hold less
total water in a foot of soil than clays. Therefore, turfgrass irrigation
schedules on these soil types can go the longest between irrigations, and
they can receive the greatest amounts of water per irrigation (other things
equal). This is because water will not go excessively deep (as in a sand),
and the plant available water amount is high. These soils also have about
50% of the soil water present available for root uptake.
(4) Heavy textured soils (clay loams, clay) hold the greatest amount
of water (if it is capable of absorbing it). However, only about 30-35%
of the total water in the soil is available. The finer the soil particles,
the more resistance there is for the particle to 'release' the water to
the turfgrass root. Heavy textured soils may 'feel' moist when sampled,
or pass the 'screw driver test', but they may need the same amount of irrigation
water applied as that of medium textured soils. Since these soils are slow
to absorb water (slow infiltration) they need to be irrigated frequently
with lesser amounts of water per irrigation. This particular consideration
paints an irrigation picture similar to that of coarse sand, but for different
reasons !!!
[Maximizing soil water uptake and use with turfgrass management techniques.]
(1) Almost all trafficked turfgrass surfaces get compacted. It is worse
on heavy textured soils (high in silt/clay contents). Aerification, grooving
and slicing are highly beneficial when done at the right time of the year.
Deep-tine aerification is very beneficial. It is not necessary to refill
the holes in aerifyed turf in areas other than golf course tees and greens.
(2) Do not make soil layers by surface amending soils. Sand topdressing
on a loam, clay, or silty soil will eventually cause problems. Poor aerification
and a man-made drainage barrier will result.
(3) Topical applications of organic matter will improve percolation
through enhance soil structure formation. Light applications should be
practiced.
(4) A drainage barrier or poor drainage within the soil profile is
undesirable and sometimes detrimental. A barrier increases the water content
between the soil particles at the expense of oxygen. Roots need oxygen
to function properly. Only high profile areas have 'man--made' provisions
for drainage (use of tile drains-sand rootzones, etc.). Deep tine aerification
is the practical way to best manage drainage problems.
Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture & Life Sciences, The University of Arizona. The University of Arizona is an equal opportunity, affirmative action institution. The University does not discriminate on the basis of race, color, religion, sex, national origin, age, disability, veteran status, or sexual orientation in its programs and activities.